REPORT ON REGELTECHNIEK WPO SESSION

FIRST AND SECOND SESSIONS - EXERCISES

- How do you obtain the step response if only the impulse response is available? q)
 - 1) Show the codes of the computation in Matlab
 - 3) Compare the step response estimates from point g) and f)

- h=lsim(H,u_dirac,t); s=lsim(H,u_step,t); % 'discrete intergral' is calculated as s_from.h=cumsum(h)*t0; figure; hold on; plot(t,s); plot(t,s_from_h); xlabel('time [sec]');ylabel('amplitude'); legend({'step response','step response estimated from impulse response'});

2. Consider the following systems $H_1(s) = \frac{1}{s^2+3s+2}$ and $H_2(s) = \frac{s+1}{s+2}$

a) Realize the systems in transfer function form

s=tf('s'); H1=1/(s^2+3*s+2); H2=(s+1)/(s+2);

- b) Calculate the resulting plant model from the serial connection of the systems considered
 - 1) using * operator
 - 2) using series command
 - 3) check if 1) and 2) provide the same results
 - 4) store the results in Hs variable, use zpk (Zero-Pole-Gain) form

Hs_1=H1*H2; Hs_2=series(H1,H2); Hs_1-Hs_2 % there is no difference here Hs=zpk(Hs_1);

- Calculate the resulting plant model from the parallel connection of the systems considered C)
 - 1) using + operator
 - 2) using parallel command
 - 3) check if 1) and 2) provide the same results
 - 4) store the results in Hp variable, use zpk form

Hp_1=H1+H2; Hp_2=paralle1(H1,H2); Hp_1-Hp_2 % there is no difference here Hp=zpk(Hp_1);

Simplify Hs and Hp d)

- 1) in analytic way (show your equations)
- 2) using minreal command
- 3) check if 1) and 2) provide the same results
- 4) store the results in Hs and Hp variables, respectively

% Hs=(s+1)/((s+2)^2*(s+1)) --> easy to see that we can simplify with s+1 Hs=minreal(HS); % it worked % Hp =(s+2)*(sA2 + 2*s + 2)/ ((s+2)^2*(s+1)) --> we can simplify with s+2 Hp=minreal(Hp); % as you can see it fails to simplify

- - Place Hs in the forward loop and apply a negative feedback (-1 gain) e)
 - 1) using * and operators
 - 2) using feedback command
 - 3) check if 1) and 2) provide the same results
 - 4) simplify the results using minreal command
 - 5) is the system stable? (explain)
 - store the result in Hfs variable 6)

Hfs_1=Hs/(1+Hs); Hfs_2=feedback(Hs,1); % the provided result is is simplier Hfs_1-Hfs_2 % there is a small difference, due the the solver Hfs=minreal(Hfs_2); figure; pzmap(Hfs) % --> the system is stable, the poles are on the left hand-side

- Place Hs in the forward loop and Hp in a negative feedback loop f)
 - 1) using * and + operators
 - 2) using feedback command
 - check if 1) and 2) provide the same results 3)
 - simplify the results using minreal command 4)
 - is the system stable? (explain) 5)

- Hfp_1=Hs/(1+Hs*Hp); Hfp_2=feedback(Hs,Hp); Hfp_1-Hfp_2 % there is a small difference, due the the solver Hfp=minreal(Hfp_2); figure; pzmap(Hfp) % --> the system is stable, the poles are on the left hand-side
 - Plot the step responses of Hfs and Hfp g)

Pole-Zero Map -1.5 -1.5 -1 1ds⁻¹)

Use Isim to simulate the responses with fs=1 kHz, choose an appropriate time interval for the simulation

- 1) compare the different responses
- 2) estimate with the help of step response figures the static gain, rise time, settling time, peak-time, dominant time constant. Show clearly on your plot how you estimate the different quantities
- Compare your results from 2) with the results of stepinfo and other related commands used to obtain the 3) above-mentioned quantities. Explain the differences. Use a table to compare the quantities

fs=1e3; t0=1/fs; tmin=0; tmax=7; t=tmin:t0:tmax; N=length(t); u_step=1*ones(1,N);

figure: subplot(121)
lsim(Hfs,u_step,t)
title('Step response - Hs'); ylim([0 0.25]); grid on;

subplot(122); lsim(Hfp,u_step,t)
title('Step response - Hfs'); ylim([0 0.25]); grid on;

Quantity	Hfs		Hfp	
_	From plot	Matlab	From plot	Matlab
Static gain	0.2	0.2 use dcgain(Hfs)	0.2	0.2 use dcgain(Hfs)
Settling time	2.04 s	2.0749 s	3.86 s	4.0123 s
Rise time	1.266 s (1.5-0.234)	1.2783 s	1.217 s (1.44-0.223)	1.2115 s
Time constant	0.884 s	Use the 1/real(dominant pole)	0.881 s	Use the 1/real(dominant pole)
Peak time	2.51 s	3.1315 s	2.51	2.8276

Warning: the figures are only qualitative

3. Consider the following systems $H_1(s) = \frac{10s+1}{s+1}$ and $H_2(s) = \frac{s}{(10s+1)(5s+1)}$

- Realize the systems a)
- XXXX
 - b) Calculate the resulting plant model from the serial connection of the systems considered and store the result in Hs variable, simplify if it is possible
- XXXX
 - Calculate the resulting plant model from the parallel connection of the systems considered and store the c)result in Hp variable, simplify if it is possible
- XXXX
 - Place Hs in the forward loop and apply a negative feedback (-1 gain) and store the results in Hfs variable d)
- XXXX
 - Place Hs in the forward loop and Hp in the negative feedback loop and store the results in Hfp variable e)
- XXXX
 - Plot the step responses of Hp; and Hfs and Hfp for open and closed loop cases. Use Isim command with f) fs=1 kHz. Choose carefully the simulation time and the limits on y-axis
 - 4) compare the different responses in one figure
 - 5) estimate with the help of step response figures the static gain, rise time, settling time, peak-time, overshoot. Show clearly on your plot how you estimate the different quantities
 - 6) Compare your results from 2) with the results of stepinfo command. Explain the differences. Use a table to compare the quantities open loop -Hs open loop - Hs*Hp

90

-45

ncy (rad/s)

(deg) 45

Phase 0

45 (deg)

-45

Frequency (rad/s)

Phase